Usage of RBF Networks in prediction of network traffic
نویسندگان
چکیده
Prediction of future time series values is area of statistics and computer science research related to pattern recognition. Especially possibility of prediction of the future computer network traffic may be usable in detection of abnormal situations like DoS attacks or occurrence of problems with network infrastructure. The article is devoted to usage artificial neural networks, with radial basis activation function for prediction of network traffic in sample local area networks.
منابع مشابه
Traffic Signal Prediction Using Elman Neural Network and Particle Swarm Optimization
Prediction of traffic is very crucial for its management. Because of human involvement in the generation of this phenomenon, traffic signal is normally accompanied by noise and high levels of non-stationarity. Therefore, traffic signal prediction as one of the important subjects of study has attracted researchers’ interests. In this study, a combinatorial approach is proposed for traffic signal...
متن کاملPREDICTION OF NONLINEAR TIME HISTORY DEFLECTION OF SCALLOP DOMES BY NEURAL NETWORKS
This study deals with predicting nonlinear time history deflection of scallop domes subject to earthquake loading employing neural network technique. Scallop domes have alternate ridged and grooves that radiate from the centre. There are two main types of scallop domes, lattice and continuous, which the latticed type of scallop domes is considered in the present paper. Due to the large number o...
متن کاملPrediction of Red Mud Bound-Soda Losses in Bayer Process Using Neural Networks
In the Bayer process, the reaction of silica in bauxite with caustic soda causes the loss of great amount of NaOH. In this research, the bound-soda losses in Bayer process solid residue (red mud) are predicted using intelligent techniques. This method, based on the application of regression and artificial neural networks (AAN), has been used to predict red mud bound-soda losses in Iran Alumina C...
متن کاملForecasting Job Burnout among University Faculty Members of Yazd Payame Noor University Using Artificial Neural Network Technique
Background: Faculty members are one of the main factors in the higher education system, that high level of occupational stress caused by educational, research, and executive duties makes them exposed to burnout. The purpose of this study is Forecasting burnout of faculty members of Yazd Payame Noor University using artificial neural network technique. Methods: The present research is descripti...
متن کاملPrediction of Dispersed Phase Holdup in the Kühni Extraction Column Using a New Experimental Correlation and Artificial Neural Network
In this work, the dispersed phase holdup in a Kühni extraction column is predicted using intelligent methods and a new empirical correlation. Intelligent techniques, including multilayer perceptron and radial basis functions network are used in the prediction of the dispersed phase holdup. To design the network structure and train and test the networks, 174 sets of experimental data are used. T...
متن کامل